from agno.agent import AgentKnowledgefrom agno.embedder.ollama import OllamaEmbedderfrom agno.vectordb.pgvector import PgVectorembeddings = OllamaEmbedder().get_embedding( "The quick brown fox jumps over the lazy dog.")# Print the embeddings and their dimensionsprint(f"Embeddings: {embeddings[:5]}")print(f"Dimensions: {len(embeddings)}")# Example usage:knowledge_base = AgentKnowledge( vector_db=PgVector( db_url="postgresql+psycopg://ai:ai@localhost:5532/ai", table_name="ollama_embeddings", embedder=OllamaEmbedder(), ), num_documents=2,)