You are viewing v1 docs. For the latest documentation, visit docs.agno.com
import typer from agno.agent import Agent from agno.knowledge.pdf_url import PDFUrlKnowledgeBase from agno.vectordb.milvus import Milvus, SearchType from rich.prompt import Prompt vector_db = Milvus( collection="recipes", uri="tmp/milvus.db", search_type=SearchType.hybrid ) knowledge_base = PDFUrlKnowledgeBase( urls=["https://agno-public.s3.amazonaws.com/recipes/ThaiRecipes.pdf"], vector_db=vector_db, ) def milvusdb_agent(user: str = "user"): agent = Agent( user_id=user, knowledge=knowledge_base, search_knowledge=True, ) while True: message = Prompt.ask(f"[bold] :sunglasses: {user} [/bold]") if message in ("exit", "bye"): break agent.print_response(message) if __name__ == "__main__": # Comment out after first run knowledge_base.load(recreate=True) typer.run(milvusdb_agent)
Create a virtual environment
Terminal
python3 -m venv .venv source .venv/bin/activate
Set your API key
export OPENAI_API_KEY=xxx
Install libraries
pip install -U pymilvus tantivy pypdf openai agno
Run Agent
python cookbook/agent_concepts/knowledge/vector_dbs/milvus_db/milvus_db_hybrid_search.py
Was this page helpful?