You are viewing v1 docs. For the latest documentation, visit docs.agno.com
from os import getenv from agno.agent import Agent from agno.knowledge.pdf_url import PDFUrlKnowledgeBase from agno.vectordb.pineconedb import PineconeDb api_key = getenv("PINECONE_API_KEY") index_name = "thai-recipe-index" vector_db = PineconeDb( name=index_name, dimension=1536, metric="cosine", spec={"serverless": {"cloud": "aws", "region": "us-east-1"}}, api_key=api_key, ) knowledge_base = PDFUrlKnowledgeBase( urls=["https://agno-public.s3.amazonaws.com/recipes/ThaiRecipes.pdf"], vector_db=vector_db, ) knowledge_base.load(recreate=False, upsert=True) agent = Agent( knowledge=knowledge_base, show_tool_calls=True, search_knowledge=True, read_chat_history=True, ) agent.print_response("How do I make pad thai?", markdown=True)
Create a virtual environment
Terminal
python3 -m venv .venv source .venv/bin/activate
Set your API key
export PINECONE_API_KEY=xxx
Install libraries
pip install -U pinecone-client pypdf openai agno
Run Agent
python cookbook/agent_concepts/vector_dbs/pinecone_db.py
Was this page helpful?