from agno.agent import Agentfrom agno.knowledge.pdf_url import PDFUrlKnowledgeBasefrom agno.vectordb.search import SearchTypefrom agno.vectordb.weaviate import Distance, VectorIndex, Weaviatevector_db = Weaviate( collection="recipes", search_type=SearchType.hybrid, vector_index=VectorIndex.HNSW, distance=Distance.COSINE, local=True, # Set to False if using Weaviate Cloud and True if using local instance)# Create knowledge baseknowledge_base = PDFUrlKnowledgeBase( urls=["https://agno-public.s3.amazonaws.com/recipes/ThaiRecipes.pdf"], vector_db=vector_db,)knowledge_base.load(recreate=False) # Comment out after first run# Create and use the agentagent = Agent( knowledge=knowledge_base, search_knowledge=True, show_tool_calls=True,)agent.print_response("How to make Thai curry?", markdown=True)