You are viewing v1 docs. For the latest documentation, visit docs.agno.com
from agno.agent import Agent from agno.embedder.ollama import OllamaEmbedder from agno.knowledge.pdf_url import PDFUrlKnowledgeBase from agno.models.ollama import Ollama from agno.vectordb.pgvector import PgVector db_url = "postgresql+psycopg://ai:ai@localhost:5532/ai" knowledge_base = PDFUrlKnowledgeBase( urls=["https://agno-public.s3.amazonaws.com/recipes/ThaiRecipes.pdf"], vector_db=PgVector( table_name="recipes", db_url=db_url, embedder=OllamaEmbedder(id="llama3.2", dimensions=3072), ), ) knowledge_base.load(recreate=True) # Comment out after first run agent = Agent( model=Ollama(id="llama3.2"), knowledge=knowledge_base, show_tool_calls=True, ) agent.print_response("How to make Thai curry?", markdown=True)
Create a virtual environment
Terminal
python3 -m venv .venv source .venv/bin/activate
Install Ollama
ollama pull llama3.2
Install libraries
pip install -U ollama sqlalchemy pgvector pypdf agno
Run PgVector
docker run -d \ -e POSTGRES_DB=ai \ -e POSTGRES_USER=ai \ -e POSTGRES_PASSWORD=ai \ -e PGDATA=/var/lib/postgresql/data/pgdata \ -v pgvolume:/var/lib/postgresql/data \ -p 5532:5432 \ --name pgvector \ agnohq/pgvector:16
Run Agent
python cookbook/models/ollama/knowledge.py
Was this page helpful?